A System for General In-Hand Object Re-Orientation

CoRL 2021 best paper

Authors

Tao Chen

Ph.D. student at MIT intersection of robot learning, manipulation, and navigation.

Ph.D. student at MIT intersection of Robotics, Simulation, and Machine Learning

Pulkit Agrawal

Assistant Professor at MIT

build machines that can automatically and continuously learn about their environment

Overview

A model-free framework that learns to reorient objects of all kinds

Contributions

- Hand facing upward and downward
- Zero-shot transfer on new objects
 - Try vision-based observation

Method

Teacher-student Learning

Gravity Curriculum

Teacher Policy

Full Observation

MLP or RNN

Dynamic randomization

Teacher Policy

Reward Function

$$r(s_t, a_t) = c_{\theta_1} \frac{1}{|\Delta \theta_t| + \epsilon_{\theta}} + c_{\theta_2} \mathbb{1}(|\Delta \theta_t| < \bar{\theta}) + c_3 ||a_t||_2^2$$

Student Policy

Reduced Observation

Which can be obtained when in real world

Vision or Non-vision

Figure 2: Visual policy architecture. MK stands for Minkowski Engine. q_t is the joint positions and a_t is the action at time step t.

Gravity Curriculum

Hand facing downward and in air

Gradually decrease g

Stable Initialization

Reorient in air

Experiments

Figure B.2: First row: examples of EGAD objects. Second row: examples of YCB objects.

Facing upward and downward (with and without table)

Facing upward

Results

				1	2	3
Evn ID	Dataset	State	Policy	Train without DR		Train with DR
Exp. ID				Test without DR	Test with DR	Test with DR
В	ECAD	Full state	RNN	95.95 ± 0.8	84.27 ± 1.0	88.04 ± 0.6
E	LUAD	Reduced state	RNN→RNN	91.96 ± 1.5	78.30 ± 1.2	80.29 ± 0.9
G	VCP	Full state	RNN	80.40 ± 1.6	65.16 ± 1.0	72.34 ± 0.9
J	ICD	Reduced state	RNN→RNN	81.04 ± 0.5	64.93 ± 0.2	65.86 ± 0.7

Throw and Catch

Failure

Facing downward with table

MLP policy for EGAD and YCB is 95.31% \pm 0.9% and 81.59% \pm 0.7%

External Force

Facing downward without table

Result	S
--------	---

				1	2	3
Exp. ID	Dataset	State	Policy	Train without DR		Finetune with DR
				Test without DR	Test with DR	Test with DR
K	EGAD	Full state	MLP	$\textbf{84.29} \pm \textbf{0.9}$	$\textbf{38.42} \pm \textbf{1.5}$	$\textbf{71.44} \pm \textbf{1.3}$
L			RNN	82.27 ± 3.3	36.55 ± 1.4	67.44 ± 2.1
Μ		Reduced state	MLP→RNN	$\textbf{77.05} \pm \textbf{1.6}$	29.22 ± 2.6	59.23 ± 2.3
Ν			RNN→RNN	74.10 ± 2.3	$\textbf{37.01} \pm \textbf{1.5}$	$\textbf{62.64} \pm \textbf{2.9}$
0		Full state	MLP	58.95 ± 2.0	26.04 ± 1.9	44.84 ± 1.3
Р	YCB		RNN	52.81 ± 1.7	$\textbf{26.22} \pm \textbf{1.0}$	40.44 ± 1.5
Q			RNN + g-curr	$\textbf{74.74} \pm \textbf{1.2}$	25.56 ± 2.9	$\textbf{54.24} \pm \textbf{1.4}$
R		Reduced state	MLP→RNN	46.76 ± 2.5	$\textbf{25.49} \pm \textbf{1.4}$	34.14 ± 1.3
S			RNN→RNN	45.22 ± 2.1	24.45 ± 1.2	31.63 ± 1.6
Т			$RNN + g$ -curr $\rightarrow RNN$	$\textbf{67.33} \pm \textbf{1.9}$	19.77 ± 2.8	$\textbf{48.58} \pm \textbf{2.3}$

Also Throw and Catch

Zero-shot Transfer

`	$EGAD \rightarrow YCB$	$YCB \rightarrow EGAD$
U.FS	68.82 ± 1.7	96.41 ± 1.2
U.RS	59.64 ± 1.8	96.38 ± 1.3
D.FS	62.73 ± 2.2	85.45 ± 2.9
D.RS	55.30 ± 1.3	77.91 ± 2.1

Vision-based

Constraints

	Object	Success rate (%)
1	025_mug	89.67 ± 1.2
2	065-d_cups	68.32 ± 1.9
2	072-b_toy_airplane	84.52 ± 1.4
1	073-a_lego_duplo	58.16 ± 3.1
	073-c_lego_duplo	50.21 ± 3.7
8	073-e_lego_duplo	66.57 ± 3.1

Comment

Highly Dynamic

