Mesh-based Dynamics with Occlusion Reasoning for Cloth Manipulation

Pipeline

Lift up the cloth

GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion ICCV 2021

Implicit geometry

ACID: Action-Conditional Implicit Visual Dynamics for Deformable Object Manipulation RSS 2022 Best Student Paper

Crumpled states

Given only a partial observation of a crumpled cloth, generate a complete mesh of the cloth.

Mapping to canonical state

Depth

Visible points in Canonical Space

Shape in Canonical Space

Trained in a category-dependent manner

Relative predictions

predict a 3-dimensional residual vector f for each point x_i^c .

The predicted coordinates in the observation space x_i are obtained by $x_i^o = x_i^c + f$

Trained in a category-dependent manner

Test-time finetuning

Unidirectional Chamfer loss

$$\mathcal{L}_{\mathcal{C}}(\tilde{V}^t; P^t) = \frac{1}{|P^t|} \sum_{p_i \in P^t} \min_{\tilde{v}_j \in \tilde{V}^t} d(p_i, \tilde{v}_j)$$

observation of the cloth is P^t , predicted vertex in observation space is V^t .

Mapping consistency loss

$$\mathcal{L}_{\mathcal{M}}(P^t) = \frac{1}{|P^t|} \sum_{p_i \in P^t} d(g(f(p_i)), p_i)$$

Pipeline

Mesh-based Dynamics

Dynamic model

Given a down-sampled mesh from reconstruction.

A GNN encodes the input feature on the nodes and on the edges and then conducts multiple message passing steps between the nodes and edges.

The decoder will decode the latent features of each node into the predicted acceleration for that node.

Trained only on Trousers

Mesh-based Dynamics

Planning

Randomly sample 500 pick-and-place actions and rollout each action with

the GNN dynamics model and pick the action with the highest predicted reward

Data and tasks

Cloth3D in SoftGym

Real robot

Results

With baseline

Results

Ablations

Method	Normalized Improvement
GarmentNets [53]	0.320 ± 0.146
No Mesh Reconstruction (VCD [5])	0.391 ± 0.174
No Finetuning and no Relative Prediction	0.560 ± 0.163
No Finetuning	0.585 ± 0.171
Joint Optimization	0.614 ± 0.157
No Consistency Loss	0.623 ± 0.148
Replace GNN by GT Dynamics	0.631 ± 0.161
Ours w/ Partial Reward	0.462 ± 0.210
Ours (full method)	$\textbf{0.651} \pm \textbf{0.138}$
GT Mesh + Learned Dynamics	0.800 ± 0.096
GT Mesh + GT Dynamics	0.870 ± 0.076

TABLE I: Ablation experiments.

Results

Real robot

Conclusions

Model-based approach

