Neural Mesh Models For 3D Part Detection

Chuanruo Ning

Supervised by: Angtian Wang Adam Kortylewski

Self－introduction

－Chuanruo Ning（宁川若）
■ Rising senior at Turing Class，Peking University
■ Non－CS interests：badminton，photography，music and reading
－Previous works
■ Deformable object manipulation．Accepted by ICCV 2023

$■$ Few－shot learning on articulated object manipulation．Under review of NeurIPS

What is 3D Part Detection?

- Detect precise 3D parts from a single image

Extend Render-and-compare Method to Part Detection

- NeMo's perspective
- Current NeMo features are optimized for pose estimation

■ Part-level features enable NeMo to capture precise geometric information

- 3D Part detection

■ Recognizing parts are crucial for 3D understanding

- Render-and-compare method provides 3D global prior for detection

How to Perform 3D Part Detection with Render-and-compare?

■ Locate ---- Orient ---- Deform

Input image

3D part from
a different instance

Locate

Orient

Deform

More Precisely Aligned NeMo

- NeMo leverages coarse alignment to perform robust pose estimation

- We need a more precise alignment between vertex features and 2D images

More Precisely Aligned NeMo

- Correspondence across instances

More Precisely Aligned NeMo

■ Use correspondence to share features among precise shapes

Locate \& Orient with Precise NeMo

- Results

Deform by Changing The Position of Aligned Points

- Through gradient decent process

Points with aligned features

Deform using key points [2]

- Need some constraints (to be explored)

Neural Mesh Models For 3D Part Recognition

Questions are welcomed

Thank you for Listening!

